metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C22×F5)⋊C4, C22⋊C4⋊3F5, C22⋊F5⋊1C4, D5.(C23⋊C4), C23.D5⋊5C4, D10.2(C4⋊C4), C22.6(C4×F5), C23.5(C2×F5), (C2×C10).1C42, C22.8(C4⋊F5), (C22×D5).6Q8, C5⋊1(C23.9D4), D10.2(C22⋊C4), (C22×D5).141D4, C2.5(D10.3Q8), (C23×D5).81C22, C22.16(C22⋊F5), C10.3(C2.C42), (C5×C22⋊C4)⋊3C4, (C2×C10).1(C4⋊C4), (D5×C22⋊C4).4C2, (C2×C22⋊F5).1C2, (C22×C10).10(C2×C4), (C22×D5).34(C2×C4), (C2×C10).16(C22⋊C4), SmallGroup(320,204)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C23 — C22⋊C4 |
Generators and relations for (C22×F5)⋊C4
G = < a,b,c,d,e | a2=b2=c5=d4=e4=1, eae-1=ab=ba, ac=ca, ad=da, bc=cb, bd=db, be=eb, dcd-1=c3, ce=ec, ede-1=abd >
Subgroups: 802 in 142 conjugacy classes, 36 normal (30 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C23, C23, D5, D5, C10, C10, C22⋊C4, C22⋊C4, C22×C4, C24, Dic5, C20, F5, D10, D10, C2×C10, C2×C10, C2×C22⋊C4, C4×D5, C2×Dic5, C2×C20, C2×F5, C22×D5, C22×D5, C22×C10, C23.9D4, D10⋊C4, C23.D5, C5×C22⋊C4, C22⋊F5, C22⋊F5, C2×C4×D5, C22×F5, C22×F5, C23×D5, D5×C22⋊C4, C2×C22⋊F5, (C22×F5)⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, F5, C2.C42, C23⋊C4, C2×F5, C23.9D4, C4×F5, C4⋊F5, C22⋊F5, D10.3Q8, (C22×F5)⋊C4
(1 19)(2 20)(3 16)(4 17)(5 18)(6 11)(7 12)(8 13)(9 14)(10 15)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)
(1 9)(2 10)(3 6)(4 7)(5 8)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 32 9 37)(2 34 8 40)(3 31 7 38)(4 33 6 36)(5 35 10 39)(11 21 17 28)(12 23 16 26)(13 25 20 29)(14 22 19 27)(15 24 18 30)
(11 16)(12 17)(13 18)(14 19)(15 20)(21 31 26 36)(22 32 27 37)(23 33 28 38)(24 34 29 39)(25 35 30 40)
G:=sub<Sym(40)| (1,19)(2,20)(3,16)(4,17)(5,18)(6,11)(7,12)(8,13)(9,14)(10,15)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,32,9,37)(2,34,8,40)(3,31,7,38)(4,33,6,36)(5,35,10,39)(11,21,17,28)(12,23,16,26)(13,25,20,29)(14,22,19,27)(15,24,18,30), (11,16)(12,17)(13,18)(14,19)(15,20)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)>;
G:=Group( (1,19)(2,20)(3,16)(4,17)(5,18)(6,11)(7,12)(8,13)(9,14)(10,15)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,32,9,37)(2,34,8,40)(3,31,7,38)(4,33,6,36)(5,35,10,39)(11,21,17,28)(12,23,16,26)(13,25,20,29)(14,22,19,27)(15,24,18,30), (11,16)(12,17)(13,18)(14,19)(15,20)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40) );
G=PermutationGroup([[(1,19),(2,20),(3,16),(4,17),(5,18),(6,11),(7,12),(8,13),(9,14),(10,15),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35)], [(1,9),(2,10),(3,6),(4,7),(5,8),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,32,9,37),(2,34,8,40),(3,31,7,38),(4,33,6,36),(5,35,10,39),(11,21,17,28),(12,23,16,26),(13,25,20,29),(14,22,19,27),(15,24,18,30)], [(11,16),(12,17),(13,18),(14,19),(15,20),(21,31,26,36),(22,32,27,37),(23,33,28,38),(24,34,29,39),(25,35,30,40)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | ··· | 4L | 5 | 10A | 10B | 10C | 10D | 10E | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 5 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 2 | 2 | 2 | 5 | 5 | 10 | 10 | 10 | 4 | 4 | 20 | ··· | 20 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 |
type | + | + | + | + | - | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | Q8 | F5 | C23⋊C4 | C2×F5 | C4×F5 | C4⋊F5 | C22⋊F5 | (C22×F5)⋊C4 |
kernel | (C22×F5)⋊C4 | D5×C22⋊C4 | C2×C22⋊F5 | C23.D5 | C5×C22⋊C4 | C22⋊F5 | C22×F5 | C22×D5 | C22×D5 | C22⋊C4 | D5 | C23 | C22 | C22 | C22 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 3 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 |
Matrix representation of (C22×F5)⋊C4 ►in GL8(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 32 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 32 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
40 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 35 | 0 | 0 | 0 | 0 | 0 | 0 |
35 | 40 | 40 | 34 | 0 | 0 | 0 | 0 |
2 | 6 | 7 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 40 | 0 | 0 | 0 | 0 |
7 | 1 | 2 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
35 | 40 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 32 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 40 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 18 | 40 | 0 | 0 | 0 | 0 | 0 |
3 | 18 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 23 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 32 |
0 | 0 | 0 | 0 | 0 | 0 | 23 | 40 |
G:=sub<GL(8,GF(41))| [40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,32,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,32,40],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[40,5,35,2,0,0,0,0,1,35,40,6,0,0,0,0,0,0,40,7,0,0,0,0,0,0,34,7,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,7,0,35,0,0,0,0,0,1,0,40,0,0,0,0,1,2,40,40,0,0,0,0,40,7,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,9,1,0,0,0,0,1,0,0,0,0,0,0,0,32,40,0,0],[1,0,3,3,0,0,0,0,0,1,18,18,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,23,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,23,0,0,0,0,0,0,32,40] >;
(C22×F5)⋊C4 in GAP, Magma, Sage, TeX
(C_2^2\times F_5)\rtimes C_4
% in TeX
G:=Group("(C2^2xF5):C4");
// GroupNames label
G:=SmallGroup(320,204);
// by ID
G=gap.SmallGroup(320,204);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,253,64,1123,851,6278,3156]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^5=d^4=e^4=1,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=c^3,c*e=e*c,e*d*e^-1=a*b*d>;
// generators/relations